Scientific research trends about metaheuristics in process optimization and case study using the desirability function
DOI:
https://doi.org/10.7769/gesec.v14i3.1809Keywords:
Statistical Software, Optimizer, Modeling, Desirability FunctionAbstract
This study aimed to identify the research gaps in Metaheuristics, taking into account the publications entered in a database in 2015 and to present a case study of a company in the Sul Fluminense region using the Desirability function. To achieve this goal, applied research of exploratory nature and qualitative approach was carried out, as well as another of quantitative nature. As method and technical procedures were the bibliographical research, some literature review, and an adopted case study respectively. As a contribution of this research, the holistic view of opportunities to carry out new investigations on the theme in question is pointed out. It is noteworthy that the identified study gaps after the research were prioritized and discriminated, highlighting the importance of the viability of metaheuristic algorithms, as well as their benefits for process optimization.
Downloads
References
Abdullahi, M., Ngadi, M. A., Dishing, S. I., Abdulhamid, S. M., & Usman, M. J. (2020). A survey of symbiotic organisms search algorithms and applications. Neural Computing and Applications, 32(2), 547–566. https://doi.org/10.1007/s00521-019-04170-4
Adarsh, B. R., Raghunathan, T., Jayabarathi, T., & Yang, X. S. (2016). Economic dispatch using chaotic bat algorithm. Energy, 96, 666–675. https://doi.org/10.1016/j.energy.2015.12.096
Alketbi, K., Elmualim, A., & Mushtaha, E. S. (2022). Investigating the Factors Influencing the Tqm Implementation on Organizations Performance. International Journal for Quality Research, 16(3), 733–748. https://doi.org/10.24874/IJQR16.03-05
Alvarenga, A. B. C. de S., Espuny, M., Reis, J. S. da M., Silva, F. D. O., Sampaio, N. A. de S., Nunhes, T. V., Barbosa, L. C. F. M., Santos, G., & Oliveira, O. J. de. (2021). The Main Perspectives of The Quality of Life of Students In The Secondary Cycle: An Overview of The Opportunities, Challenges and Elements of Greatest Impact. International Journal for Quality Research, 15(3), 983–1006. https://doi.org/10.24874/IJQR15.03-19
Araujo, M. J. F. de, Araújo, M. V. F. de, Araujo Jr, A. H. de, Barros, J. G. M. de, Almeida, M. da G. de, Fonseca, B. B. da, Reis, J. S. D. M., Barbosa, L. C. F. M., Santos, G., & Sampaio, N. A. D. S. (2021). Pollution Credit Certificates Theory: An Analysis on the Quality of Solid Waste Management in Brazil. Quality Innovation Prosperity, 25(3), 1–17. https://doi.org/10.12776/qip.v25i3.1574
Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures, 169, 1–12. https://doi.org/10.1016/j.compstruc.2016.03.001
Bell, S. O., Shankar, M., Omoluabi, E., Khanna, A., Andoh, H. K., OlaOlorun, F., Ahmad, D., Guiella, G., Ahmed, S., & Moreau, C. (2020). Social network-based measurement of abortion incidence: promising findings from population-based surveys in Nigeria, Cote d’Ivoire, and Rajasthan, India. Population Health Metrics, 18(1), 1–15. https://doi.org/10.1186/s12963-020-00235-y
Cardoso, R. P., Reis, J. S. da M., Silva, D. E. W., Barros, J. G. M. de, & Sampaio, N. A. de S. (2023). How to Perform a Simultaneous Optimization with Several Response Variables. Revista de Gestão e Secretariado, 14(1), 564–578. https://doi.org/10.7769/gesec.v14i1.1536
Chen, I. C., Chen, M. T., & Chung, T. W. (2020). Analysis of antioxidant property of the extract of saponin by experiment design methodology. IOP Conference Series: Earth and Environmental Science, 594(1). https://doi.org/10.1088/1755-1315/594/1/012002
Del Castillo, E., Montgomery, D. C., & McCarville, D. R. (1996). Modified desirability functions for multiple response optimization. Journal of Quality Technology, 28(3), 337–345. https://doi.org/10.1080/00224065.1996.11979684
Derringer, G., & Suich, R. (1980). Simultaneous Optimization of Several Response Variables. Journal of Quality Technology, 12(4), 214–219. https://doi.org/10.1080/00224065.1980.11980968
Ding, X., Sun, W., Harrison, G. P., Lv, X., & Weng, Y. (2020). Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid. Energy, 213, 118804. https://doi.org/10.1016/j.energy.2020.118804
Espuny, M., Reis, J. S. da M., Anaya, Y. B., Cardoso, R. P., Sampaio, N. A. de S., Barbosa, L. C. F. M., & Oliveira, O. J. de. (2022). Identification of Research Gaps on Municipal Solid Waste Management from Data Indexed in the SCOPUS Database. Revista de Gestão e Secretariado, 13(4), 2388–2402. https://doi.org/10.7769/gesec.v13i4.1478
Goffe, L., Uwamahoro, N. S., Dixon, C. J., Blain, A. P., Danielsen, J., Kirk, D., & Adamson, A. J. (2020). Supporting a healthier takeaway meal choice: creating a universal health rating for online takeaway fast-food outlets. International Journal of Environmental Research and Public Health, 17(24), 1–12. https://doi.org/10.3390/ijerph17249260
Gomes, F. M., Pereira, F. M., Marins, F. A. S., & Silva, M. B. (2019). Comparative study between different methods of agglutination in multiple response optimization. Revista Gestão Da Produção Operações e Sistemas, 14(1), 95–113. https://doi.org/10.15675/gepros.v14i1.2080
Gomes, F. M., Pereira, F. M., Silva, A. F., & Silva, M. B. (2019). Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions. Knowledge-Based Systems, 179, 21–33. https://doi.org/10.1016/j.knosys.2019.05.002
Gunst, R. F., Myers, H., & Montgomery, D. C. (2011). American Society for Quality. SpringerReference, 38(3), 285–286. https://doi.org/10.1007/springerreference_6379
Gunst, R. F., Myers, R. H., & Montgomery, D. C. (1996). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. In Technometrics (Vol. 38, Issue 3). https://doi.org/10.2307/1270613
Handoyono, N. A., Suparmin, Samidjo, Johan, A. B., & Suyitno. (2020). Project-based learning model with real object in vocational school learning. Journal of Physics: Conference Series, 1700(1). https://doi.org/10.1088/1742-6596/1700/1/012045
Kalra, M., & Singh, S. (2015). A review of metaheuristic scheduling techniques in cloud computing. Egyptian Informatics Journal, 16(3), 275–295. https://doi.org/10.1016/j.eij.2015.07.001
Karthikeyan, C., Sreedevi, E., Kumar, N., Vamsidhar, E., Rajesh Kumar, T., & Vijendra Babu, D. (2020). Cost optimization in neural network using whale swarm algorithm with batched gradient descent optimizer. IOP Conference Series: Materials Science and Engineering, 993(1). https://doi.org/10.1088/1757-899X/993/1/012047
Korolchenko, D., & Minaylov, D. (2020). Method of mathematical modeling for the experimental evaluation of fire retardant materials parameters. IOP Conference Series: Materials Science and Engineering, 1001(1). https://doi.org/10.1088/1757-899X/1001/1/012075
Kothari, C. R., & Garg, G. (2019). Research methodology methods and techniques. In New Age International (4o). New Age International.
Laidani, Z., Tolokonsky, A. O., Abdulraheem, K. K., Ouahioune, M., & Berreksi, R. (2020). Modelling and simulating of a multiple input and multiple output system to control the liquid level and temperature by using model predictive control. Journal of Physics: Conference Series, 1689(1). https://doi.org/10.1088/1742-6596/1689/1/012065
Lebron, Y. A. R., Moreira, V. R., Drumond, G. P., Gomes, G. C. F., da Silva, M. M., Bernardes, R. de O., Jacob, R. S., Viana, M. M., de Vasconcelos, C. K. B., & Santos, L. V. de S. (2020). Statistical physics modeling and optimization of norfloxacin adsorption onto graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606(August), 125534. https://doi.org/10.1016/j.colsurfa.2020.125534
Mitić, M., Vuković, N., Petrović, M., & Miljković, Z. (2015). Chaotic fruit fly optimization algorithm. Knowledge-Based Systems, 89(August), 446–458. https://doi.org/10.1016/j.knosys.2015.08.010
Mohamed, A. A. A., Mohamed, Y. S., El-Gaafary, A. A. M., & Hemeida, A. M. (2017). Optimal power flow using moth swarm algorithm. Electric Power Systems Research, 142, 190–206. https://doi.org/10.1016/j.epsr.2016.09.025
Muniswamaiah, M., Agerwala, T., & Tappert, C. C. (2020). Approximate Query Processing for Big Data in Heterogeneous Databases. Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, 5765–5767. https://doi.org/10.1109/BigData50022.2020.9378310
Natarajan, U., Periyanan, P. R., & Yang, S. H. (2011). Multiple-response optimization for micro-endmilling process using response surface methodology. International Journal of Advanced Manufacturing Technology, 56(1–4), 177–185. https://doi.org/10.1007/s00170-011-3156-2
Ortiz, F., Simpson, J. R., Pignatiello, J. J., & Heredia-Langner, A. (2004). A genetic algorithm approach to multiple-response optimization. Journal of Quality Technology, 36(4), 432–450. https://doi.org/10.1080/00224065.2004.11980289
Osaba, E., Yang, X. S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016). An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Engineering Applications of Artificial Intelligence, 48, 59–71. https://doi.org/10.1016/j.engappai.2015.10.006
Pesteh, S., Moayyed, H., Miranda, V., Pereira, J., Freitas, V., Simões Costa, A., & London, J. B. A. (2019). A new interior point solver with generalized correntropy for multiple gross error suppression in state estimation. Electric Power Systems Research, 176(June), 105937. https://doi.org/10.1016/j.epsr.2019.105937
Rafieerad, A. R., Bushroa, A. R., Nasiri-Tabrizi, B., Kaboli, S. H. A., Khanahmadi, S., Amiri, A., Vadivelu, J., Yusof, F., Basirun, W. J., & Wasa, K. (2017). Toward improved mechanical, tribological, corrosion and in-vitro bioactivity properties of mixed oxide nanotubes on Ti–6Al–7Nb implant using multi-objective PSO. In Journal of the Mechanical Behavior of Biomedical Materials (Vol. 69). Elsevier. https://doi.org/10.1016/j.jmbbm.2016.11.019
Rajesh Ruban, S., Jayaseelan, P., Suresh, M., & RatnaKandavalli, S. (2020). Effect of textures on machining of carbon steel under dry cutting condition. IOP Conference Series: Materials Science and Engineering, 993(1). https://doi.org/10.1088/1757-899X/993/1/012143
Rajpurohit, S., Vrkoslav, V., Hanus, R., Gibbs, A. G., Cvačka, J., & Schmidt, P. S. (2021). Post-eclosion temperature effects on insect cuticular hydrocarbon profiles. Ecology and Evolution, 11(1), 352–364. https://doi.org/10.1002/ece3.7050
Rathod, L., Poonawala, N. S., & Rudrapati, R. (2020). Multi response optimization in WEDM of H13 steel using hybrid optimization approach. IOP Conference Series: Materials Science and Engineering, 814(1). https://doi.org/10.1088/1757-899X/814/1/012015
Reis, J. S. da M., Cardoso, R. P., Silva, D. E. W., Almeida, M. da G. D. de, Barros, J. G. M. de, Sampaio, N. A. de S., & Barbosa, L. C. F. M. (2023). The Titans Sustainability and Industry 4.0 Working for The Planet Earth. Revista de Gestão e Secretariado, 14(2), 1953–1965.
Reis, J. S. da M., Espuny, M., Cardoso, R. P., Sampaio, N. A. de S., Barros, J. G. M. De, Barbosa, L. C. F. M., & Oliveira, O. J. De. (2022). Mapping Sustainability 4.0: contributions and limits of the symbiosis. Revista de Gestão e Secretariado, 13(3), 1426–1438. https://doi.org/10.7769/gesec.v13i3.1417
Reis, J. S. da M., Espuny, M., Nunhes, T. V., Sampaio, N. A. de S., Isaksson, R., Campos, F. C. de, & Oliveira, O. J. de. (2021). Striding towards Sustainability: A Framework to Overcome Challenges and Explore Opportunities through Industry 4.0. Sustainability, 13(9), 5232. https://doi.org/10.3390/su13095232
Sales, J. P. de, Reis, J. S. da M., Barros, J. G. M. de, Fonseca, B. B. da, Junior, A. H. de A., Almeida, M. da G. D. de, Barbosa, L. C. F. M., Santos, G., & Sampaio, N. A. de S. (2022). Quality Management in The Contours of Continuous Product Improvement. International Journal for Quality Research, 16(3), 689–702. https://doi.org/10.24874/IJQR16.03-02
Setiawati, E., & Yusuf, W. A. (2020). The ulitization of durian wood (Durio zibethinus) and corn cob (Zea mays) biochar on corn yields in acid sulphate soil. IOP Conference Series: Materials Science and Engineering, 980(1). https://doi.org/10.1088/1757-899X/980/1/012027
Silva, H. de O. G. da, Costa, M. C. M., Aguilera, M. V. C., Almeida, M. da G. D. de, Fonseca, B. B. da, Reis, J. S. da M., Barbosa, L. C. F. M., Santos, G., & Sampaio, N. A. de S. (2021). Improved Vehicle Painting Process Using Statistical Process Control Tools in an Automobile Industry. International Journal for Quality Research, 15(4), 1251–1268. https://doi.org/10.24874/IJQR15.04-14
Tolabi, H. B., Hosseini, R., & Shakarami, M. R. (2016). A robust hybrid fuzzy-simulated annealing-intelligent water drops approach for tuning a distribution static compensator nonlinear controller in a distribution system. Engineering Optimization, 48(6), 999–1018. https://doi.org/10.1080/0305215X.2015.1080579
Vera Candioti, L., De Zan, M. M., Cámara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123–138. https://doi.org/10.1016/j.talanta.2014.01.034
Wang, C. N., Nguyen, N. A. T., & Dang, T. T. (2020). Solving order planning problem using a heuristic approach: The case in a building material distributor. Applied Sciences (Switzerland), 10(24), 1–21. https://doi.org/10.3390/app10248959
Xu, Y., Chen, H., Heidari, A. A., Luo, J., Zhang, Q., Zhao, X., & Li, C. (2019). An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Systems with Applications, 129(April), 135–155. https://doi.org/10.1016/j.eswa.2019.03.043
Yang, L., Wang, J., Jiang, Y., & Zou, L. (2020). Oil–water flow splitting in eccentric annular T-junction tubes—Experimental and CFD analysis. Chemical Engineering Science, 228. https://doi.org/10.1016/j.ces.2020.116000
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
• 1. The author(s) authorize the publication of the article in the journal.
• 2. The author(s) ensure that the contribution is original and unpublished and is not being evaluated in other journal(s).
• 3. The journal is not responsible for the opinions, ideas and concepts expressed in the texts because they are the sole responsibility of the author(s).
• 4. The publishers reserve the right to make adjustments and textual adaptation to the norms of APA.
• 5. Authors retain copyright and grant the journal right of first publication, with the work [SPECIFY PERIOD OF TIME] after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
• 6. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
• 7. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access) at http://opcit.eprints.org/oacitation-biblio.html