Ensaio teórico sobre o uso das redes neurais artificiais no gerenciamento de resultados
DOI:
https://doi.org/10.7769/gesec.v14i1.1563Keywords:
Gerenciamento de Resultados, Accruals, Redes Neurais Artificiais, Machine LearningAbstract
A Rede Neural Artificial (RNA) tem capacidade de simular uma rede neural biológica e apresenta-se como uma ferramenta que pode auxiliar na redução de problemas econométricos mediante modelos matemáticos. Modelos de gerenciamento de resultados apresentam um problema fundamental pelo fato dos accruals discricionários da gestão não serem diretamente observáveis, o que vem a afetar a avaliação do desempenho real de empresas. Portanto, este ensaio tem como objetivo apresentar a RNA como uma abordagem que pode minimizar problemas observados em modelos de gerenciamento de resultados por accruals. A literatura sobre gerenciamento de resultados apresenta diversos problemas relacionados aos modelos por accruals: proxies não confiáveis, interpretação restrita, incentivos, existência de condições simultâneas, problemas de correlação, classificação e especificação em modelos de gerenciamento, entre outros. Com base no suporte teórico apresentado pela literatura, entende-se que a utilização da abordagem da RNA pode proporcionar melhores níveis de poder e especificidade em modelos de gerenciamento de resultados por accruals. Este estudo visa contribuir com diversos usuários da informação contábil por evidenciar problemas em modelos de gerenciamento, bem como apresentar uma proposta baseada em inteligência artificial como solução para os problemas observados.
Downloads
References
Arya, A., Glover, J., & Sunder, S. (1998). Earnings management and the revelation principle. Review of Accounting Studies, 3(1–2), 7–34. https://doi.org/10.1023/a:1009631714430 DOI: https://doi.org/10.1023/A:1009631714430
Basu, S. (1997). The conservatism principle and the asymmetric timeliness of earnings. Journal of Accounting and Economics, 31(3), 3–37. https://doi.org/10.1177/0962280211413449 DOI: https://doi.org/10.1016/S0165-4101(97)00014-1
Berle, A. A., & Means, G. G. C. (1932). The Modern Corporation and Private Property. In The Modern Corporation and Private Property (First). Harcourt, Brace & World, Inc. https://doi.org/10.4324/9781315133188 DOI: https://doi.org/10.4324/9781315133188
Black, R., & Nakao, S. H. (2017). Heterogeneidade na qualidade do lucro contábil entre diferentes classes de empresas com a adoção de IFRS: evidências do Brasil. Revista Contabilidade e Financas, 28(73), 113–131. https://doi.org/10.1590/1808-057x201702750 DOI: https://doi.org/10.1590/1808-057x201702750
Chollet, F. (2018). Deep Learning with Python (First). Manning Publications Co.
Dechow, P., & Dichev, I. D. (2002). The Quality of Accruals and Earings: The Role of Accruals Estimation Errors. The Accounting Review, 77(2002), 35–59. https://doi.org/10.2308/accr.2002.77.s-1.61 DOI: https://doi.org/10.2308/accr.2002.77.s-1.35
Dechow, P., Ge, W., & Schrand, C. (2010). Understanding earnings quality: A review of the proxies, their determinants and their consequences. Journal of Accounting and Economics, 50(2–3), 344–401. https://doi.org/10.1016/j.jacceco.2010.09.001 DOI: https://doi.org/10.1016/j.jacceco.2010.09.001
Dechow, P. M., Hutton, A. P., Kim, J. H., & Sloan, R. G. (2012). Detecting Earnings Management: A New Approach. Journal of Accounting Research, 50(2), 275–334. https://doi.org/10.1111/j.1475-679X.2012.00449.x DOI: https://doi.org/10.1111/j.1475-679X.2012.00449.x
Dechow, P. M., Richardson, S. A., & Tuna, I. (2003). Why Are Earnings Kinky? An Examination of the Earnings Management Explanation. Review of Accounting Studies 2003 8:2, 8(2), 355–384. https://doi.org/10.1023/A:1024481916719 DOI: https://doi.org/10.1023/A:1024481916719
Dechow, P. M., Sloan, R. G., & Sweeney, A. P. (1995). Detecting Earnings Management. The Accounting Review, 70(2), 193–225. https://doi.org/10.2307/248303
DeFond, M. L. (2010). Earnings quality research: Advances, challenges and future research. Journal of Accounting and Economics, 50(2–3), 402–409. https://doi.org/10.1016/j.jacceco.2010.10.004 DOI: https://doi.org/10.1016/j.jacceco.2010.10.004
Ewert, R., & Wagenhofer, A. (2011). Earnings Management, Conservatism, and Earnings Quality. Foundations and Trends in Accounting, 6(2), 65–186. https://doi.org/10.1561/1400000025 DOI: https://doi.org/10.1561/1400000025
Fairfield, P. M., Whisenant, S., & Yohn, T. L. (2003). The Differential Persistence of Accruals and Cash Flows for Future Operating Income versus Future Profitability. Review of Accounting Studies, 8(2), 221–243. https://doi.org/10.1023/A:1024413412176 DOI: https://doi.org/10.1023/A:1024413412176
Faller, W. E., & Schreck, S. J. (1995). Real-Time Prediction of Unsteady Aerodynamics: Application for Aircraft Control and Maneuverability Enhancement. IEEE Transactions on Neural Networks, 6(6), 1461–1468. https://doi.org/10.1109/72.471362 DOI: https://doi.org/10.1109/72.471362
Fama, E. F. (1980). Agency Problems and the Theory of the Firm. Journal of Political Economy, 88(2), 288–307. https://doi.org/10.1086/260866 DOI: https://doi.org/10.1086/260866
Fields, T. D., Lys, T. Z., & Vincent, L. (2001). Empirical research on accounting choice. Journal of Accounting and Economics, 31(1–3), 255–307. https://doi.org/10.1016/S0165-4101(01)00028-3 DOI: https://doi.org/10.1016/S0165-4101(01)00028-3
Francis, J., Olsson, P., & Schipper, K. (2008). Earnings Quality. Foundations and Trends in Accounting, 1(4), 259–340. https://doi.org/10.1561/1400000004 DOI: https://doi.org/10.1561/1400000004
Healy, P. M., & Wahlen, J. M. (1999). A Review of the Earnings Management Literature and Its. Accounting Horizons, 13(4), 365–383. https://doi.org/10.2308/acch.1999.13.4.365 DOI: https://doi.org/10.2308/acch.1999.13.4.365
Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3(4), 305–360. DOI: https://doi.org/10.1016/0304-405X(76)90026-X
Jeter, D. C., & Shivakumar, L. (1999). Cross-sectional estimation of abnormal accruals using quarterly and annual data: effectiveness in detecting event-specific earnings management. Accounting and Business Research, 29(4), 299–319. https://doi.org/10.1080/00014788.1999.9729590 DOI: https://doi.org/10.1080/00014788.1999.9729590
Jones, J. J. (1991). Earnings Management During Import Relief Investigations. Journal of Accounting Research, 29(2), 193. https://doi.org/10.2307/2491047 DOI: https://doi.org/10.2307/2491047
Kang, S. H., & Sivaramakrishnan, K. (1995). Issues in Testing Earnings Management and an Instrumental Variable Approach. Journal of Accounting Research, 33(2), 353. https://doi.org/10.2307/2491492 DOI: https://doi.org/10.2307/2491492
Kothari, S. P., Leone, A. J., & Wasley, C. E. (2005). Performance matched discretionary accrual measures. Journal of Accounting and Economics, 39(1), 163–197. https://doi.org/10.1016/j.jacceco.2004.11.002 DOI: https://doi.org/10.1016/j.jacceco.2004.11.002
Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the Artificial Neural Networks, In: Suzuki K (ed), Artificial Neural Networks: Methodological Advances and Biomedical Applications. InTech, 1–18. http://www.intechopen.com/books/artificial-neural-networks-methodological-advances-and-biomedical-applications/introduction-to-the-artificial-neural-networks DOI: https://doi.org/10.5772/15751
Lam, M. (2004). Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems, 37(4), 567–581. https://doi.org/10.1016/S0167-9236(03)00088-5 DOI: https://doi.org/10.1016/S0167-9236(03)00088-5
McNichols, M. F. (2000). Research design issues in earnings management studies. Journal of Accounting and Public Policy 19(4–5). https://doi.org/10.1016/S0278-4254(00)00018-1 DOI: https://doi.org/10.1016/S0278-4254(00)00018-1
Salgado, N. de N. B., & Souza, P. V. S. de. (2021). The Effect of Accounting Timeliness on Earnings Management for Brazilian Companies Listed on B3. Advances in Scientific and Applied Accounting, 14(1), 039–055 / 056. https://doi.org/10.14392/asaa.2021140102 DOI: https://doi.org/10.14392/asaa.2021140102
Scott, W. R. (2015). Financial accounting theory (Seventh). Pearson Canada Inc.
Skansi, S. (2018). Introduction to Deep Learning. In Deep Reinforcement Learning: Fundamentals, Research and Applications. https://doi.org/10.1007/978-3-319-73004-2 DOI: https://doi.org/10.1007/978-3-319-73004-2
Sloan, R. G. (1996). Do Stock Prices Fully Refelct Information in Accruals and Cash Flows About Future Earnings? The Accounting Review, 71(3), 289–315.
Subramaniam, N. (2006). Agency theory and accounting research: an overview of some conceptual and empirical issues. In Z. Hoque (Ed.), Methodological issues in accounting research: theories and methods, 55–81. Spiramus Press.
Sunder, S. (1997). Theory of Accounting and Control. South-Western College Publishing.
Sung, K., & Niyogi, P. (1994). Active Learning for Function Approximation. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in Neural Information Processing Systems (Vol. 7). MIT Press. https://proceedings.neurips.cc/paper/1994/file/acf4b89d3d503d8252c9c4ba75ddbf6d-Paper.pdf
Sutton, S. G., Holt, M., & Arnold, V. (2016). The reports of my death are greatly exaggerated. Artificial intelligence research in accounting. International Journal of Accounting Information Systems, 22, 60–73. https://doi.org/10.1016/j.accinf.2016.07.005 DOI: https://doi.org/10.1016/j.accinf.2016.07.005
Touzet, C. F. (1997). Neural reinforcement learning for behaviour synthesis. Robotics and Autonomous Systems, 22(3–4), 251–281. https://doi.org/10.1016/S0921-8890(97)00042-0 DOI: https://doi.org/10.1016/S0921-8890(97)00042-0
Vellido, A., Lisboa, P. J. G., & Vaughan, J. (1999). Neural networks in business: a survey of applications (1992–1998). Expert Systems with Applications, 17(1), 51–70. https://doi.org/10.1016/S0957-4174(99)00016-0 DOI: https://doi.org/10.1016/S0957-4174(99)00016-0
Watts, R. L. (2003). Conservatism in Accounting Part I: Explanations and Implications. Accounting Horizons, 17(3), 207–221. https://doi.org/10.2308/ACCH.2003.17.3.207 DOI: https://doi.org/10.2308/acch.2003.17.3.207
Watts, R. L., & Zimmerman, J. L. (1986). Positive Accounting Theory. Prentice-Hall Inc.
Xie, H. (2001). The Mispricing of Abnormal Accruals. The Accounting Review, 76(3), 357–373. https://doi.org/10.2308/ACCR.2001.76.3.357 DOI: https://doi.org/10.2308/accr.2001.76.3.357
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
• 1. The author(s) authorize the publication of the article in the journal.
• 2. The author(s) ensure that the contribution is original and unpublished and is not being evaluated in other journal(s).
• 3. The journal is not responsible for the opinions, ideas and concepts expressed in the texts because they are the sole responsibility of the author(s).
• 4. The publishers reserve the right to make adjustments and textual adaptation to the norms of APA.
• 5. Authors retain copyright and grant the journal right of first publication, with the work [SPECIFY PERIOD OF TIME] after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
• 6. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
• 7. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access) at http://opcit.eprints.org/oacitation-biblio.html